Autor bzw. Ersteller | Becker, Moritz | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Klassifizierungen |
|
||||||||||||||||||||||||||||||||||||
Art der Forschungsdaten | Dataset | ||||||||||||||||||||||||||||||||||||
Erstellungsjahr | 2022 | ||||||||||||||||||||||||||||||||||||
Herausgeber | KIT-Bibliothek | ||||||||||||||||||||||||||||||||||||
Jahr der Veröffentlichung | 2022 | ||||||||||||||||||||||||||||||||||||
DOI | 10.5445/IR/1000152278 | ||||||||||||||||||||||||||||||||||||
Lizenz | CC BY-SA 4.0
![]() |
||||||||||||||||||||||||||||||||||||
Liesmich |
# RandomShimDB: A subset of the NMR magnet shimming database ShimDB RandomShimDB is a subset of the NMR magnet shimming database [ShimDB](https://github.com/mobecks/ShimDB) and contains over 15000 instances. Data is aquired on a Spinsolve 80 Carbon spectrometer (Magritek GmbH, Aachen, Germany, www.magritek.com) on 5%vv H2O in D2O and a water solution with CuSO4 (5mmol/L). RandomShimDB is part of "Acquisitions with random shim values enhances AI-driven NMR shimming" by M. Becker et al. [1]. The acquisition procedure was as follows. The manufacturer's automated shimming technique, based on the downhill simplex method, was used to obtain a reference spectrum. Then, the shims X, Y, Z and Z2 were varied. The dataset parameters were obtained by relative offsets from the reference shim values in a range R with weighting W, following Gaussian noise sampling. For each combination, the raw FID, acquisition parameters, and the shim values were stored. | Topic | Parameter | Value | |------------------------|------------------|-----------------------| | Dataset parameters | Shims | X,Y,Z,Z2 | | | Weightings W | [1.2, 1.0, 2.0, 18.0] | | | Shim range R | +/- 50 | | | Sample I | H2O+CuSO4 | | | Sample II | 5vol% H2O in D2O | | | Nr. spectra | {5000,10000} | | Acquisition parameters | Nucleus | 1H | | | Bandwidth | 5 kHz | | | Points | 32768 | | | Repetition time | 2000 ms | | | Phase correction | phi_0 | **We strongly encourage researchers to extend ShimDB with their own subsets to stimulate developments. We offer to include raw data or links to your publications into ShimDB.** ## Files format Each folder in RandomShimDB contains the following files: - data.1d -> the raw FID. - shims.par -> Shim values, where only linear shims are non-zero. - acqu.par -> Acquisition parameters. - proc.par -> Processing parameters. The RandomShimDB root folder also contains the reference starting shims (ReferenceShims.par). ## Data loading We deliver a python script ```utils_IO.py``` alongside [ShimDB](https://github.com/mobecks/ShimDB) to easily load the database into numpy array structure using the [nmrglue packages](https://github.com/jjhelmus/nmrglue)[2]. The following python libraries and packages are required: os, numpy, glob, nmrglue (>= v0.9.dev0) # References [1] M. Becker, S. Lehmkuhl, S. Kesselheim, J. G. Korvink, and M. Jouda, “Acquisitions with random shim values enhance AI-driven NMR shimming,” J. Magn. Reson., p. 107323, 2022, doi: https://doi.org/10.1016/j.jmr.2022.107323. [2] J. J. Helmus and C. P. Jaroniec, “Nmrglue: An open source Python package for the analysis of multidimensional NMR data,” J. Biomol. NMR, vol. 55, no. 4, pp. 355–367, 2013, doi: https://doi.org/10.1007/s10858-013-9718-x.
We strongly encourage researchers to extend ShimDB with their own subsets to stimulate developments. We offer to include raw data or links to your publications into ShimDB. Files formatEach folder in RandomShimDB contains the following files:
The RandomShimDB root folder also contains the reference starting shims (ReferenceShims.par). Data loadingWe deliver a python script The following python libraries and packages are required: os, numpy, glob, nmrglue (>= v0.9.dev0) References[1] M. Becker, S. Lehmkuhl, S. Kesselheim, J. G. Korvink, and M. Jouda, “Acquisitions with random shim values enhance AI-driven NMR shimming,” J. Magn. Reson., p. 107323, 2022, doi: https://doi.org/10.1016/j.jmr.2022.107323. [2] J. J. Helmus and C. P. Jaroniec, “Nmrglue: An open source Python package for the analysis of multidimensional NMR data,” J. Biomol. NMR, vol. 55, no. 4, pp. 355–367, 2013, doi: https://doi.org/10.1007/s10858-013-9718-x. |
Zugriffszähler | 133 |
---|---|
Downloadzähler | 1 |
Die Forschungsdaten sind sicher im Archiv aufbewahrt und könnten sich auf Speicherbändern befinden. Ein direkter Zugriff könnte momentan nicht möglich sein. Um die Daten herunterzuladen haben Sie die folgenden Möglichkeiten:
In diesem Abschnitt können BagIT Dateien heruntergeladen werden. Es ist zu beachten, dass die Dateien aus dem Archiv abgerufen werden müssen und dies möglicherweise lange dauern kann. Die Dateien können aber vorab gecached werden. Mehr Informationen zu BagIT sind unter nachfolgendem Link verfügbar (The BagIt File Packaging Format).:
Klicken Sie bitte auf den Button und wir werden die Dateien aus dem Archiv holen und in einer Zip-Datei bündeln.
Name | Dateigröße | Hochgeladen | Prüfsumme (MD5) |
---|---|---|---|
RandomShimDB_CuSO4.zip | 607.26 MiB | 04.11.22 14:12:01 | e9c62054097546f85595b30db9a0a757 |
RandomShimDB_Ref_D2O.zip | 1.19 GiB | 04.11.22 14:11:25 | f624917b22d427547dc444454d8db8d8 |