Autor bzw. Ersteller | Pilia, Nicolas; Schuler, Steffen; Rees, Maike; Moik, Gerald; Potyagaylo, Danila; Dössel, Olaf; Loewe, Axel (Axel Loewe) |
---|---|
Schlagwörter | ECG, in silico, extrasystoles |
Klassifizierungen |
|
Art der Forschungsdaten | Dataset |
Erstellungsjahr | 2023 |
Herausgeber | KIT-Bibliothek |
Jahr der Veröffentlichung | 2023 |
DOI | 10.5445/IR/1000156139 |
Abstract |
1.8 million ECGs derived from multiscale simulations of cardiac electrophysiology of ventricular extrasystoles. 1000 anatomical variants of a bi-ventricular mesh x 600 excitation origins x 3 heart positions in the torso.
|
Lizenz | CC BY-NC-SA 4.0
![]() |
Liesmich |
This dataset contains about 1.8 million body surface potentials (BSPs) simulated using 1000 heart models generated using a statistical shape model. It has been used in [1]. Here, only the noise-free BSPs are provided. Due to its size, this is a multi-part dataset: - Part 1: https://doi.org/10.5445/IR/1000156139 - Part 2: https://doi.org/10.5445/IR/1000156554 - Part 3: https://doi.org/10.5445/IR/1000156555 - Part 4: https://doi.org/10.5445/IR/1000156556 - Part 5: https://doi.org/10.5445/IR/1000156557 Each archive XXXX-YYYY.tar contains 20 heart models and corresponding signals. Each subdirectory within the archive contains: - heart.vtp: A triangle mesh of the heart including the point data: - ab, rt, rtCos, rtSin, tm, tv: Consistent biventricular coordinates [2]. - class: Boundary regions used as input for the computation of fiber orientations [3]. - trigger: 1-based indices of the ca. 600 foci (-1000 if not a focus). - heart_transform_matrices.mat: A 1 x 3 cell array containing 4 x 4 transformation matrices that, together with heart_alignment_matrix.mat (see below), describe the pose of the heart within the torso. First apply the matrix from heart_alignment_matrix.mat and then the matrix from heart_transform_matrices.mat to the nodes in heart.vtp. - actTimes.mat: A numNodes x numFoci matrix of activation times computed using the fast iterative method [4,5] (conduction velocity in fiber direction: 1 m/s, perpendicular to fiber direction: 1/2.7 m/s). - bsp.mat: - bsp: A numElectrodes x numTimeSamples x numHeartPoses x numFoci matrix of BSPs computed by aligning a transmembrane voltage template with scaled activation times (see actTimeScalings.mat below) and solving the second bidomain equation using the boundary element method [6]. - bspEnd: Time index of the end of depolarization (largest scaled activation time). The archive general.tar contains heart-model-independent data and parameters used to generate the individual heart models: - torso.vtp: A triangle mesh of the torso including the point data: - electrodes: 1-based indices of the 200 electrodes (-1000 if not an electrode). - heart_meanshape.vtp: A triangle mesh of the mean shape of the statistical shape model [7,8]. - heart_shapemodel.mat: - pc: A 3*numNodes x numModes matrix of principal components (numModes = 100). - var: A numModes x 1 vector of variances. - weights: A numModes x numModels matrix of weights used to generate the 1000 heart models. - heart_alignment_matrix.mat: A 4 x 4 transformation matrix describing the alignment of the mean shape with the torso-specific heart. - heart_transform_params.mat: A struct containing roll, pitch, yaw angles and x, y, z translations used to generate the heart_transform_matrices.mat (see above). - fiber_angles.mat: - alphaEndo: numModels x 1 vector of endocardial fiber angles used to generate fiber orientations. - alphaEpi: numModels x 1 vector of epicardial fiber angles used to generate fiber orientations. - actTimeScalings.mat: - A numModels x numFoci matrix of factors used to scale the activation times. - tmv_template.mat: The transmembrane voltage time course used to compute BSPs. - heart_classes.vtp: A coarse triangle mesh of the mean shape used for fuzzy classification. - heart_classes_subdiv.vtp: A subdivided version of the coarse triangle mesh of the mean shape used to convert between Cobiveco and barycentric coordinates. [1] https://doi.org/10.48550/arXiv.2209.08095 [2] https://doi.org/10.1016/j.media.2021.102247 [3] https://github.com/KIT-IBT/LDRB_Fibers [4] https://github.com/KIT-IBT/FIM_Eikonal [5] https://doi.org/10.1137/120881956 [6] https://doi.org/10.1016/j.cmpb.2007.09.004 [7] https://doi.org/10.5281/zenodo.4506463 [8] https://doi.org/10.1016/j.media.2015.08.009
Each archive XXXX-YYYY.tar contains 20 heart models and corresponding signals. Each subdirectory within the archive contains:
The archive general.tar contains heart-model-independent data and parameters used to generate the individual heart models:
[1] https://doi.org/10.48550/arXiv.2209.08095 [2] https://doi.org/10.1016/j.media.2021.102247 [3] https://github.com/KIT-IBT/LDRB_Fibers [4] https://github.com/KIT-IBT/FIM_Eikonal [5] https://doi.org/10.1137/120881956 [6] https://doi.org/10.1016/j.cmpb.2007.09.004 [7] https://doi.org/10.5281/zenodo.4506463 [8] https://doi.org/10.1016/j.media.2015.08.009 |
Zugriffszähler | 206 |
---|---|
Downloadzähler | 6 |
Die Forschungsdaten sind sicher im Archiv aufbewahrt und könnten sich auf Speicherbändern befinden. Ein direkter Zugriff könnte momentan nicht möglich sein. Um die Daten herunterzuladen haben Sie die folgenden Möglichkeiten:
In diesem Abschnitt können BagIT Dateien heruntergeladen werden. Es ist zu beachten, dass die Dateien aus dem Archiv abgerufen werden müssen und dies möglicherweise lange dauern kann. Die Dateien können aber vorab gecached werden. Mehr Informationen zu BagIT sind unter nachfolgendem Link verfügbar (The BagIt File Packaging Format).:
Klicken Sie bitte auf den Button und wir werden die Dateien aus dem Archiv holen und in einer Zip-Datei bündeln.
Name | Dateigröße | Hochgeladen | Prüfsumme (MD5) |
---|---|---|---|
0001-0020.tar | 17.64 GiB | 20.02.23 14:12:33 | 46b96b1971b9b6d27a8ac3f088ba3a2e |
0021-0040.tar | 17.7 GiB | 20.02.23 14:59:58 | 13b83f27afcc4c0d1bfcecfd8b58f9e1 |
0041-0060.tar | 17.63 GiB | 20.02.23 14:36:31 | 817536653462650934edfb6ce0b9aff3 |
0061-0080.tar | 17.67 GiB | 20.02.23 15:47:55 | 6443c2ba95ba19a81b09b80fa6a14e62 |
0081-0100.tar | 17.61 GiB | 20.02.23 15:24:41 | 98d3731522c3736e0fa6a73157e46b81 |
0101-0120.tar | 17.77 GiB | 06.03.23 10:03:25 | 45b27caa35f1eb8f5b07123776460e93 |
0121-0140.tar | 17.64 GiB | 20.02.23 17:05:11 | 689856996119e07948cf4d1728d5cd99 |
0141-0160.tar | 17.76 GiB | 20.02.23 16:41:34 | 79eb8b7eb604b6448d3fb1f1f5dc8549 |
0161-0180.tar | 17.7 GiB | 20.02.23 16:17:19 | 4712019bc437d4e96954e6988db6819d |
0181-0200.tar | 17.66 GiB | 21.02.23 08:44:44 | 6bd8aeec00c952bc66bf465a2fc58997 |